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Abstract:

A key state variable in land surface—atmosphere interactions is soil moisture, which affects surface energy fluxes,
runoff and the radiation balance. Soil moisture modelling relies on parameter estimates that are inadequately measured
at the necessarily fine model scales. Hence, model soil moisture estimates are imperfect and often drift away from
reality through simulation time. Because of its spatial and temporal nature, remote sensing holds great promise for
soil moisture estimation. Much success has been attained in recent years in soil moisture estimation using passive
and active microwave sensors, but progress has been slow. One reason for this is the scale disparity between remote
sensing data resolution and the hydrologic process scale. Other impediments include vegetation cover and microwave
penetration depth. As a result, currently there is no comprehensive method for assimilating remote soil moisture
observations within a surface hydrology model at watershed or larger scales.

This paper describes a measurement—modelling system for estimating the three-dimensional soil moisture distri-
bution, incorporating remote microwave observations, a surface flux—soil moisture model, a radiative transfer model
and Kalman filtering. The surface model, driven by meteorological observations, estimates the vertical and lateral dis-
tribution of water. Based on the model soil moisture profiles, microwave brightness temperatures are estimated using
the radiative transfer model. A Kalman filter is then applied using modelled and observed brightness temperatures to
update the model soil moisture profile.

The modelling system has been applied using data from the Southern Great Plains 1997 field experiment. In the
presence of highly inaccurate rainfall input, assimilation of remote microwave data results in better agreement with
observed soil moisture. Without assimilation, it was seen that the model near-surface soil moisture reached a minimum
that was higher than observed, resulting in substantial errors during very dry conditions. Updating moisture profiles
daily with remotely sensed brightness temperatures reduced but did not eliminate this bias. Copyright © 2002 John
Wiley & Sons, Ltd.
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INTRODUCTION

Background and motivation

Despite a need in many earth science disciplines for soil moisture information, large-scale continuous soil
moisture measurements are not possible today. The accuracy of soil moisture estimated by hydrology models
depends on the model physics and the number and configuration of soil layers, as well as the accuracy and
the temporal and spatial nature of the input data. Because modelled soil moisture estimates are temporally
correlated, model estimates tend to deviate systematically from reality in the absence of new measurements.
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Meteorological and hydrological observations or predictions are typically available at 6—24 h intervals and are
subject to significant errors. This is especially true for radar or raingauge estimates of precipitation, which is
the primary control on soil moisture. Such long sampling intervals and uncertainties can produce unacceptable
errors in soil moisture. Utilization of remote sensing data directly in a model may potentially improve model
soil moisture estimates at high spatial and temporal resolutions.

Remote sensing of soil moisture from space is advantageous because of its spatial coverage and temporal
continuity. Research in soil moisture remote sensing began in the mid 1970s (Eagleman and Lin, 1976;
Njoku and Kong, 1977). Recent advances in remote sensing have shown that soil moisture, or at least
‘surface wetness’, can be measured by several methods. Quantitative measurements of surface layer soil
moisture have been most successful using both passive and active remote sensing in the microwave region.
Early attempts to measure soil moisture from space using passive microwave sensors were hindered by what
is now considered a less-than-optimal frequency and/or coarse spatial resolution. The lowest frequency of
the Scanning Multichannel Microwave Radiometer (SMMR), launched in 1978, was 6-6 GHz and yielded a
resolution of about 140 km. The lowest frequency of the Special Sensor Microwave Imager (SSM/I), launched
in 1987, is 19-3 GHz and has a resolution of about 40 km. In addition to problems of spatial resolution,
attenuation of microwave radiation in the presence of even small amounts of vegetation becomes a problem
at relatively high frequencies, such as the 19-3 GHz SSM/I channel. Two new radiometers may offer some hope
for satellite remote sensing of surface wetness. The Tropical Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI), launched in 1997, has a ground resolution of about 45 km for its 10-65 GHz channel. The
Advanced Microwave Scanning Radiometer (AMSR) to be launched on NASA’s Earth Observing System
(EOS) Aqua satellite and on the Japanese Advanced Earth Observing Satellites-II (ADEOS-II) in 2002 has
a resolution of 56 km at 6-:9 GHz. However, the aforementioned resolution and vegetation problems may
impede progress toward estimating soil moisture with TMI and AMSR.

Existing space-borne synthetic aperture radars (SARs) have shown some potential to detect surface wetness.
These instruments operate in the C-band (European Remote Sensing, ERS-1, and the Canadian RADARSAT)
and L-band (Japanese Earth Resources Satellite, JERS-1). The advantage of radar systems is their much
higher resolution relative to passive microwave systems, but they are currently hampered by the lack of a
good algorithm that is based on a single frequency and single polarization. In addition, their repeat frequency is
generally low (about 40 days). RADARSAT can achieve a repeat cycle as little as 3 days with its SCANSAR
mode, but this is not practical on a global scale.

Early modelling studies showed that even infrequent soil moisture measurements can lead to better soil
water budget estimates. Benard et al. (1981) demonstrated that evaporation could be modelled very accurately
with the contribution of surface moisture measurements every 3 days. Prevot et al. (1984) continued this work
and showed that the soil water balance could be determined with equal accuracy using remotely sensed surface
soil moisture estimates substituted for in situ observations. Smith and Newton (1983) developed a soil water
simulation model that utilized remotely sensed data to predict profile moisture.

Recent investigations have focused on the assimilation of remote sensing data in hydrologic models for the
purpose of improving soil moisture estimation. Entekhabi et al. (1994) demonstrated in a theoretical study
the potential for assimilating microwave data using a Kalman filter. This scheme was tested using daily
microwave observations over an 8 day period, as well as through a 4 month simulation in which simulated
microwave ‘observations’ were used to update soil moisture at 3 day intervals (Galantowicz ef al., 1999). In
this study, rainfall information was withheld from the hydrologic model, and it was found that the assimilation
of remotely sensed estimates resulted in excellent soil moisture retrievals, as long as the soil properties were
known with good accuracy. Li et al. (1998) performed a feasibility study in which intermittent in situ soil
moisture measurements served as a proxy for remote sensing observations. Their approach was to adjust
iteratively the soil hydraulic conductivity and evaporative parameters to force the modelled near-surface soil
moisture to match measurements better. They found that by doing so the agreement between measured and
modelled soil moisture improved not only in the surface layer but in the root zone as well. Houser et al. (1998),
using a distributed hydrologic model, applied various data assimilation methods to simulate soil moisture fields
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based on incomplete remote sensing coverage, but did not address the disparate spatial resolutions of remote
observations and surface models. They concluded that assimilation schemes of low to moderate complexity
performed nearly as well as more complex ones, and with a smaller computational burden.

Despite the potential, the hydrologic community has been slow to embrace soil moisture remote sensing.
Algorithm development is complicated by the need for surface roughness and vegetation corrections, which
are based on empirical relationships developed from limited data. Laymon ez al. (1999) found that typical
errors in vegetation water content may result in soil moisture retrieval errors of up to 5% volumetric water
content for typical moisture conditions, and even higher for very wet soils. Errors in soil moisture related to
uncertainties in soil texture and surface roughness were seen to be almost as large. Another problem is that
satellites can only provide measurements every few days or so under the best orbital circumstances. Perhaps
the biggest challenge stems from the resolution of the remote sensing data sets, which is inconsistent with
the scale of the hydrologic processes of interest. The 45-56 km resolution of current satellite-borne passive
microwave sensors (TMI, AMSR) may be useful for supplying moisture estimates to numerical weather
prediction models, but this is too coarse for most hydrologic applications. L-band (1-3 GHz) observations
are now deemed optimal for soil moisture detection (Jackson and Schmugge, 1989), but they are limited
to the upper few centimetres of soil (Engman and Chauhan, 1995; Jackson et al., 1997). The Electronically
Steered Thinned Array Radiometer (ESTAR), a 1-4 GHz aircraft-based instrument, has shown promise for
soil moisture determination (Jackson et al., 1995). Initiatives are underway to develop an L-band instrument
for space to provide soil moisture estimates at 30 km resolution with a repeat frequency of 3 days or less,
but such an instrument will not be deployed for several years.

Scientific objective

The objective of this research is to apply a Kalman filter-based method for assimilating remotely sensed
soil moisture estimates into a spatially distributed soil moisture model. This research addresses an important
current issue: how useful are remotely sensed data in estimating soil moisture and how can they be applied
in a way that minimizes their inherently deficient spatial and temporal resolutions? A Kalman filter provides
an optimal solution based on both measurements and model estimates. This approach has the advantage of
coupling the space—time continuity of a surface model with intermittent remote observations in a framework
that balances model and measurement uncertainties. This paper describes a method for applying remote
sensing data to update soil moisture estimates in a spatially distributed land surface model, and is similar to
that of Entekhabi et al. (1994). The results presented herein pertain to point-scale testing of the modelling
scheme using data from the Southern Great Plains 1997 (SGP97) hydrology experiment (Jackson et al., 1999).
In the future we will extend the approach to address the more challenging problem of spatially distributed
implementation using SGP97 observations.

MODEL FRAMEWORK AND APPLICATION

Overview

The diurnal cycle and spatial pattern of the soil moisture profile can be well represented by a land surface
hydrology model, but these estimates may deviate from reality during long numerical simulations. Presumably,
updating a model with remotely sensed soil moisture estimates would improve its performance. The framework
used here for estimating the spatial nature of the soil moisture profile is represented in Figure 1. The starting
point of the process is indicated on the left side of Figure 1, where a land surface hydrology model (see
next section) is initialized with soil moisture profile information. At times when remotely sensed brightness
temperatures are available (right side), model moisture profiles are used as input to the forward radiative
transfer model, which is applied to produce brightness temperatures for a set of microwave frequencies on the
model grid. Using modelled and remotely sensed brightness temperature estimates, a Kalman filter is applied
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Figure 1. Schematic representation of the model-remote sensing soil moisture estimation scheme. Time is represented by the vertical
dimension. Models or algorithms are represented by cubical elements, and their inputs and outputs are shown as two-dimensional grids

on the model grid to nudge model estimates toward the measurements. The resulting soil moisture profiles
are then used to update the model, which is run until remote data are again available. An advantage to this
system is that measured brightness temperatures are used directly to update soil moisture, obviating the need
for an inverse radiative transfer model.

Models

Simulator for hydrology and energy exchange at the land surface (SHEELS). The land surface flux—soil
moisture model used in this study is SHEELS. The physics of SHEELS are based on the biosphere—atmosphere
transfer scheme (BATS) of Dickinson et al. (1993). SHEELS has retained the treatment of vegetation properties
and the surface flux parameterizations of BATS. All relevant hydrologic and energy processes are modelled to
determine moisture in each soil layer. Formulations of variables such as surface energy fluxes and temperatures
are similar to those in an earlier version of the model (Smith et al., 1993).

Sub-surface hydrologic processes in SHEELS differ significantly from BATS. The nested three-layer
approach of BATS has been converted to a discrete layer configuration in SHEELS, in which the number
and depth of layers are flexible. This permits higher vertical resolution near the surface where temperature
and moisture gradients are large, and is compatible with remotely sensed moisture data. The vertical soil
water dynamics algorithm has been modified following the Darcy flow approach of the soil hydrology model
(SHM; Capehart and Carlson, 1994). Also, a lateral sub-surface flow component has been added. Together,
these modules estimate the three-dimensional diffusive and gravitational soil water fluxes. Dynamic time
stepping based on soil moisture has been introduced in these algorithms to maximize computational efficiency
while satisfying numerical stability criteria.

SHEELS is driven by seven atmospheric forcing variables: air temperature, relative humidity, atmospheric
pressure, incident solar and infrared radiative fluxes, wind speed and precipitation. Meteorological input
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variables may be spatially distributed or uniform, depending on the scale of the model domain. SHEELS
also requires spatially distributed soil properties, including saturated hydraulic conductivity, saturated matric
potential, rooting depth, porosity, and wilting point. Required vegetation properties include canopy height,
fractional vegetation cover, leaf area index, minimum stomatal resistance, and reflectance properties. Values
for these soil and vegetation parameters and the methods used to obtain them are given in Table I.

The output of SHEELS consists primarily of surface energy fluxes and associated state variables describing
temperatures and moisture conditions. SHEELS estimates volumetric water content at each time step for each
soil layer. The layer thicknesses are model parameters and are defined to meet the needs of the application.
For remote sensing studies in which the near-surface soil moisture is updated using microwave data, it is
advisable to partition the upper 5—10 cm soil depth into layers of approximately 1-2 cm thickness. This
permits a detailed characterization of the near-surface profile, and is particularly important when assimilating
microwave observations at multiple frequencies, since each frequency gives information about a different soil
depth. In this study the soil layer thickness is 2 cm.

Surface or skin temperature is determined in SHEELS based on the energy balance of the uppermost soil
layer (2 cm), a thinner layer than the upper layer in BATS. The SHEELS skin temperature is thus more
consistent with remotely sensed surface temperature. Canopy temperature is calculated from the vegetation
energy budget, and is constrained using air temperature in order to prevent the ‘runaway effect’ in which
canopy temperature becomes unrealistically high (Toby Carlson, personal communication).

The temporal change in soil moisture content in each of the soil layers is determined in SHEELS by
considering the contributions of infiltration, evaporation, transpiration, diffusion, and gravitational drainage.
Surface runoff and ponded water are also calculated. Infiltration / is calculated using the Green—Ampt equation
based on the amount of precipitation P reaching the soil surface directly or through the vegetation canopy
P4. Surface runoff R, is based on local slope angle ¢ and infiltration excess:

Ry = (P+Pyq—1I)sing (1)

The amount of water reaching the soil surface that does not run off or infiltrate is assumed to pond on the
surface. The change in depth of water in soil layer i (d;) due to water exchange with the atmosphere can be
expressed as:

od;/ot =1;, —E; — T; 2)

where I;, E;, and T; are the amounts of infiltration, evaporation, and transpiration attributed to layer i. These
terms are proportions of the total quantities /, E, and 7, and are determined by applying weighting functions
to specified contributing depths for each variable. For infiltration,

I =wil 3)

where weight w! is the proportion of the total infiltration that is extracted from layer i, and is defined to
decrease linearly from the surface downward:

wi = [Az;(1 — z;/Dp)1/(D1/2) @

Dy is a landcover type-dependent variable representing the depth over which infiltration is distributed within
one model time step, Az; is the thickness of layer i and z; is the depth at the middle of layer i.

The weighting functions for evaporation and transpiration are obtained in a similar manner, but are modified
in proportion to the soil moisture content within each layer. This allows for more evapotranspiration to be
extracted for wet layers than for drier layers relative to the underlying weighting function, which decreases
from the surface downward. For evaporation,

E; =wFE ®)

l
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Table 1. Definitions, values and data sources for parameters used in the SHEELS, RTM, and Kalman filter models

Parameter definition Value Units Data source
SHEELS
Number of soil layers in upper zone 5 unitless
Number of soil layers in root zone 10 unitless
Number of soil layers in bottom 25 unitless
zone
Thickness of upper zone 100 mm
Thickness of root zone 200 mm
Thickness of bottom zone 500 mm
Porosity of upper zone 0-48 unitless Mohanty (2001)
Porosity of root zone 0-45 unitless Mohanty (2001)
Porosity of bottom zone 0-42 unitless Mohanty (2001)
Saturated hydraulic conductivity of 0-02 mm s~! Mohanty (2001)
upper zone
Saturated hydraulic conductivity of 0-001 mm s~ Mohanty (2001)
root zone
Saturated hydraulic conductivity of 0-0003 mm s~! Mohanty (2001)
bottom zone
Clapp—Hornberger soil parameter 6-5 unitless Model optimization
Saturated soil suction (negative 150 mm Dickinson et al. (1993)
matric potential)
Soil moisture at which transpiration 0-25 fractional Dickinson et al. (1993)
ceases
Soil depth for evaporation and 50 mm Estimated
infiltration
Leaf area index 0-5 unitless Estimated from field
observations
Canopy height 0-2 m Mohanty (2001)
Fractional vegetation cover 02 unitless Estimated from field
observations
Minimum stomatal resistance 300 s m~! Dickinson et al. (1993)
Minimum canopy visible albedo 0-1 unitless Dickinson et al. (1993)
Minimum canopy near-IR albedo 03 unitless Dickinson et al. (1993)
RTM
Microwave frequencies 1-413, 2-65 GHz SLMR configuration
Radiometer look angle 15 degrees SLMR configuration
Bound water content in soil 0-05 m? m™3 Jackson and Schmugge (1989),
Dobson et al. (1985)
Vegetation water content 0-2 kg m~> J. Judge, personal
communication
B parameter in RTM vegetation 0-3 m? kg™ Jackson and Schmugge (1991)
correction
Surface RMS roughness 0-3 cm Estimated from field
observations
Empirical coefficient in soil mixing 0-65 unitless Dobson et al. (1985)
model
Deep soil (10 m) temperature 291 K Annual mean temperature
Kalman filter
Initial soil moisture variance 0-0004 Estimated
Model system propagation error 0-0001 (m* m—3)? day™! Estimated
variance
Observation (T'g) error variance 9 K? Estimated
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where:
wE =wlg;/ Z (w6, (6)

and 6; is the volumetric water content (proportion of porosity) for layer i. The summation is over soil layers
extending to depth D;. The effect of Equations (3)—(6) is that the amount of water extracted via transpiration
is distributed to the bottom of the root zone, whereas infiltration and evaporation affect a shallower layer of
depth Dy.

After the layer water depths are updated by applying Equation (2) to account for ‘external’ forcing
(infiltration, evaporation, and transpiration), volumetric water contents for each layer are updated. If a layer
exceeds its saturation point, infiltration is reduced so that the layer is just saturated, and the excess water is
partitioned between runoff and ponding based in the local slope. After accounting for external controls, the
internal three-dimensional soil water fluxes (diffusion and drainage) are then determined at each grid cell.
The vertical fluxes are formulated using Darcy’s law:

qo = —Koy/oz — K @)

where gy is the vertical water flux, K = K(0) is the hydraulic conductivity, and i = /() is the hydraulic
matric potential.
Applying mass continuity and expressing terms as functions of 6 yields the diagnostic equation:

30/t = —(1/p) dqe/dz = 8/3z[D(0) 30/3z] + G(6)30/dz (8)

where p = porosity, D(0) = K-9¢/d0 is the diffusion coefficient, and G(0) = 0K /d0 is the gravitational
coefficient.

Equation (8) is solved in matrix form for each of the soil layers at the ‘Darcy time step’, which depends on 6
and is calculated from the numerical stability criterion. The diffusion term is solved using the Crank—Nicholson
numerical scheme, and the functions {(9) and K(0) are given by the empirical parameterizations of Clapp
and Homberger (1978).

Because of the different time scales of vertical and lateral sub-surface flow, these processes are treated in
separate modules in SHEELS. After the soil water contents have been adjusted to account for vertical soil
water fluxes, lateral sub-surface flow is considered. Darcy flow is assumed in the x and y directions, with
the elevation at each grid point used to determine the total hydraulic potential differences between grid cells.
Stream channels and impermeable boundaries are defined and used to set lateral boundary conditions.

Forward radiative transfer model (RTM). The forward RTM is a coherent wave model (Njoku and Kong,
1977) developed for a stratified medium characterized by potentially complex soil moisture and temperature
profiles. The model is based on the relationship between surface microwave brightness temperature and the
physical surface temperature through the effective emissivity, which is strongly controlled by the soil moisture
content. The model is used in this study to estimate brightness temperature at specified microwave frequencies.
Required input variables to the RTM are surface temperature, vegetation water content, and soil moisture,
temperature and density profiles. The moisture and temperature profiles are obtained from SHEELS output.
Values of other model parameters are given in Table 1.

The brightness temperature for horizontal polarization, T'p, neglecting the effects of surface roughness and
vegetation, is given by: .

cos(¢)

where k is the free space wavenumber (= 27/A, where A is wavelength), ¢ is the observation angle from
nadir, 7(z) is temperature at depth z below the surface, £(z) is the complex dielectric constant, and ¥(z) is
subject to:

Tp,

/0 TP () dz ©)

Py ()

dz?

+ {e@k* — [ksin(@)]*} ¥(z) =0 (10)
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Although soil moisture does not appear explicitly in Equations (9) and (10), it comes into effect through
its strong influence on the dielectric constant. For a non-uniform temperature profile, a direct solution of
Equations (9) and (10) is not feasible. Therefore, the problem is reformulated into one consisting of a stratified
soil having layers that are thin enough to be assumed of uniform temperature and dielectric constant. In so
doing, the integral in Equation (9) is replaced by a summation that accurately estimates the integral provided
the thickness of the layer is small compared with the wavelength (Njoku and Kong, 1977). In the current
study, the summation is performed using 50 soil layers, the thicknesses of which are inversely proportional
to wavelength.

The effect of surface roughness has been incorporated into the model using the statistical method of
Choudhury et al. (1979), which treats the soil surface height as having a Gaussian distribution with variance
o?. The microwave reflectance of a bare rough surface is thus given by:

Ry = R, exp(—402k? cos” ¢) (1)

where R, is the reflectivity of a bare smooth surface.

The effect of vegetation on microwave brightness temperature is considered using the formulation of Jackson
and Schmugge (1991), in which the transmissivity y of the vegetation layer is determined as a function of
the optical depth t:

y? = exp[—2tsec(9)] (12)

and the optical depth is parameterized in terms of the vegetation water content wy:
T = bw, (13)

where b is an empirical coefficient. In this study, we used a constant value of w, = 0-2 kg m~2 based on
measurements, and assumed b = 0-3 from previous studies of short grass (Jackson and Schmugge, 1991). The
vegetation transmissivity is then used to obtain the surface reflectance for a vegetated rough surface:

Ry = ¥ Ry (14)

Combining Equations (11)—(14), the brightness temperature 7Ty for a vegetated rough surface can be
expressed in terms of the surface temperature and the reflectivity of a bare smooth surface:

TB = (] - er)Tsfc (15)
=[1 — ¥*Ro exp(—40°k” cos® )Tz (16)

We estimated from field observations that the standard deviation o of surface height was approximately
0-3 cm. Inclusion of the roughness factor increases the L-band T'g up to 5 K for dry to moderately wet soils,
but the effect is somewhat greater for wet soils.

Kalman filter soil moisture updating. Our method for assimilating remotely sensed data is built on the
assumption that remote observations are available at irregular intervals of 1 day or longer. Between updates,
soil moisture evolves through the system equations. If the dynamical system were deterministic, its evolution
could be predicted exactly. This is not the case here due to uncertainties in model physics, parameters, and
initial conditions. Instead, the state vector X(¢) satisfies the stochastic equation:

d[X (n]/dt = FIX (1)] + w(r) (17)
and the observation vector Z at time #; satisfies:

Z; = [ Xy ] + v (18)
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where # is the non-linear representation of the radiative transfer model. The noise components w(¢) and vy are
assumed to be independent Gaussian random variables with covariance matrices Py and Ry respectively. This
is a classic extended Kalman filter problem of a stochastic—dynamic non-linear system in which imperfect,
intermittent observations are used to nudge the model state toward the observation (Brown and Hwang, 1992).
The amount of nudging is given by the Kalman gain and is based on the relative uncertainties of the state
and observation vectors and the difference between the vectors. In this study the state vector is defined as
the volumetric soil moisture profile at 40 layers of equal thickness (2 cm) down to 0-8 m depth. In the
current application, the observation vector contains L- and S-band brightness temperatures obtained from a
ground-based radiometer system (see next section on point-scale testing).

In Equation (17), F[X] is a simplified (but non-linear) version of the total soil moisture tendency as formu-
lated in SHEELS, representing diffusion and gravitational drainage of water and a simple evapotranspiration
parameterization, but neglecting infiltration, as follows:

30/t = 3/9z(K 9/dz) + 9K /dz — ET (19)

where ET is the amount of water extracted by evapotranspiration, given for layer k in the Kalman filter
algorithm by:
ETy = ETnaxer0/ Az (20)

where ETpax is @ maximum ET rate and e, is the proportion of the total ET that is extracted from layer £,
expressed in a form similar to wF in Equation (6).

Because our problem involves the nonlinear system in Equation (17), we use the extended Kalman filter
method, in which the solution is linearized about a reference state vector X *. Writing Equation (17) in finite
difference form:

Xir1 = O X + T 2D
where
o, =1+JAt (22)
Ty = [FX™) — JX*]At (23)
and
J = d(FIX])/oX 24)

In the above equations, At is the time interval and I is the identity matrix. The matrix J is obtained by
expressing Equation (19) in finite difference form and differentiating with respect to the state vector.
The Kalman gain matrix, which defines the relative weighting of model output and measurements, is defined
at time step k by:
G = Pi(-)H Xi(-)H Xy ()P (-H (Xi(=)) + Ri] ™! (25)

where (—) denotes a pre-update quantity, X, is the estimate of the state vector at time step k, and H is the
matrix translating state space into observation space:

Hij(X}) = 8(Z)/0X | = 0(Z;)/ 6, 26)
H is expressed empirically in a form that represents the dependence of penetration depth z,; on wavelength

and soil moisture content:
H;j = cie %/ 27)
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where ¢; is the value of H;; at the soil surface (z = 0), i is the wavelength index (1 = L-band, 2 = S-band),
and j is the soil layer. Based on sensitivity tests with the RTM, we define ¢; and c; as:

c = 6091 — 120 (28)
c; = 806, — 160 (29)

Previous studies indicate that the penetration depth for microwave radiation is proportional to wavelength
and inversely related to water content (Jackson and Schmugge, 1989). In this study we define the penetration
depth z,; in terms of wavelength A; and the upper layer water content 6;:

Zp,i = 2i(0-25 — 0-206,) (30)

According to Equation (30), the penetration depth approaches A/4 for dry soil and A/20 when the soil is
nearly saturated.

The state vector error covariance matrix P is initialized at time ¢t = 0 using estimates of state vector
uncertainty and then propagated through time based on the system equations:

Pi(—) = & 1P 1@ + Qr1 (31)

in which the subscripts denote time step and Q is the covariance matrix for the model propagation errors. The
variance (diagonal) elements of Q are set to a constant value (see Table I) and the covariance (off-diagonal)
elements are zero.

When a remote observation is available, the state vector error covariance matrix is updated according to:

Pi(4) = I — GeHy (X (-)IPi(-) (32)

where (4) denotes the post-update estimate.
The state vector (moisture profile) is updated at time step k by applying the Kalman gain Gy, to the difference
between measured and modelled brightness temperatures:

X, (+) = Xi (=) + GilZy — h(Xi(-))] (33)

where X (=) is the SHEELS state vector estimate and h(f 1 (—)) is the brightness temperature vector estimated
from the radiative transfer model.

Point-scale testing of the Kalman filter

Central Oklahoma has been a focus of extensive hydrological and meteorological research for many years.
As a result, there is an abundance of nested measurement networks that make this area uniquely data rich.
During SGP97, ground-based microwave brightness temperature measurements were made by the S- and
L-band Microwave Radiometer (SLMR), a passive dual-frequency microwave system (Jackson et al., 1997)
at the Department of Energy’s Atmospheric Radiation Measurement Cloud Atmosphere Radiation Testbed
(ARM CART) Central Facility.

As a test of the modelling—remote sensing strategy, we have applied it at point scale using data from SGP97.
Implementing the model in this way eliminates issues associated with spatial scaling and provides a means
for validating the Kalman update scheme. Data from site CF02 at the Central Facility, where a soil profile
station and SLMR were operated, have been used in this test of the Kalman filter algorithm. The study period
for this analysis is 23 June—16 July (days 174—197). During this time, the field was covered with senescent
wheat that had been cut to a height of about 0-2 m. The modelling system has been applied to simulate
conditions within the footprint of SLMR. However, within the footprint the soil moisture measurements were
made only for the 0—6 cm layer using a type ML1 ThetaProbe, a manually operated impedance instrument
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manufactured by Delta-T Devices, Ltd. The ThetaProbe was inserted vertically into the soil to measure the
mean volumetric water content for the 0—6 cm layer. The instrument returns a voltage that is converted to
volumetric soil moisture through laboratory calibration. Regression equations (r = 0-995 or better) were used
to convert voltage to volumetric water content. Values used here are the mean of six or nine measurements
made within the SLMR footprint area. Because soil moisture and temperature profiles were not measured
within the footprint area, observations from the profile station, located in the wheat field approximately 50 m
from the footprint area, were used along with the ThetaProbe moisture measurements to provide the required
initial conditions for model simulations. The profile data consists of soil moisture at depths of 5, 10, 15, 20, 30
and 40 cm measured with a Campbell Scientific CS615 Water Content Reflectometer (WCR) and temperature
at 3, 10, 20 and 40 cm depths obtained using soil thermistors. Measurements taken at the profile site of soil
porosity at 5, 15 and 30 cm depths, as well as vegetation water content, were used to supply required model
inputs.

Demonstrating the improvements gained by using remote sensing data, even in a local-scale modelling
application in which accurate meteorological measurements are used, can be problematic. Even at the local
scale, there is a great deal of heterogeneity in surface and sub-surface conditions, especially soil properties.
As an example, during SGP97 two soil profile stations were situated approximately 3 m apart at the Central
Facility. One was located in a wheat field where the soil had been cultivated, and the second was in a grazed
pasture. Following a rainfall of 87 mm, the wetting front penetrated to at least 40 cm depth at the wheat site.
In contrast, on the range plot there was no response in soil moisture at the 10 cm depth. The accuracy of
soil property measurements is also quite poor. The combination of spatial variability and measurement error
has a large impact on the ability to model soil hydrological processes accurately. Finally, models simulate
layer-average moisture quantities, whereas in sifu observations represent conditions at fixed depths. These
factors make model-measurement comparisons of soil moisture profiles difficult, especially near the surface,
where moisture gradients are large. Remotely sensed data, even those from a ground-based system such as
SLMR, are also subject to errors, mainly due to calibration. Consequently, it can be difficult to quantify the
benefits of using data assimilation in a hydrologic modelling system.

In an effort to create a robust test of the possible benefit of remote updates, we have performed a series
of SHEELS simulations in which errors were intentionally introduced into model rainfall inputs. In each
situation, the model was run using the observed meteorology at 30 min time steps until the time of the
first available SLMR observation. The modelled moisture and temperature profiles were then used in the
RTM to determine the simulated brightness temperature. The Kalman filter [Equation (33)] was applied using
simulated and observed brightness temperatures to update the moisture profile estimate; SHEELS was then
run until the next update time. SLMR data were used to update the system daily, with the exception of days
177 and 181 when they were unavailable. Updates were performed near 9:00 LDT to maximize data coverage
and to avoid the complex moisture and temperature profiles that occur in mid-afternoon due to strong surface
heating and drying.

In all simulations, soil properties were based on measured values (Mohanty, 2001) where possible; some
values were altered slightly by optimizing the model to the local conditions until good agreement with
measured near-surface moisture was attained. Model tuning was limited to the saturated hydraulic conductivity
and Clapp—Hornberger parameter, and values were confined to a range consistent with loam soil. Given these
constraints, it was not possible to achieve perfect agreement with measurements for the wide range of moisture
conditions that occurred during the study. Values of soil and vegetation properties that were not measured
were based on Dickinson et al. (1993).

The first model runs performed were a SHEELS control run (denoted CON) which used gauge-observed
rainfall, and a parallel simulation, CON-U, in which daily SLMR observations were used to update the soil
moisture via the Kalman filter algorithm. Figure 2 shows the model soil water content for the 0—6 cm layer
(the average of the top three 2 cm layers) for the CON and the CON-U simulations. Also shown in Figure 2
for comparison is the soil moisture measured by the ThetaProbes. Results from the CON simulation match the
ThetaProbe measurements closely during the wet periods, but there is a tendency for the upper soil layer in
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Figure 2. Volumetric soil moisture for the 0—6 cm layer from ‘control’ simulations using observed rainfall as input. Results from simulations
with and without remote updating are shown. Soil moisture measured by the ThetaProbe sensors is shown for comparison
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Figure 3. Volumetric soil moisture for the root zone (10-30 cm) from simulations using observed rainfall as input. Model runs with and
without remote updating are shown

SHEELS to dry too slowly following the rain events. This is particularly evident during days 186—191, when
model estimates are approximately 0-1 m* m™3 (10% volumetric water content) higher than measurements.
Soil moisture updating (CON-U simulation) consistently dries the soil moisture profile relative to CON,
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mitigating the noted model bias, but differences remain when the soil is very dry. This is related to the
relatively low sensitivity of measured brightness temperature to soil for very dry soil. Root zone (10-30 cm)
soil moisture in the CON-U simulation is similarly reduced by Kalman filter updating, as shown in Figure 3.

Two model runs were made to evaluate the effectiveness of the update scheme in the presence of inaccurate
precipitation input. These simulations were performed using double and one-half the observed rainfall and are
designated DRF and HRF respectively. Parallel runs were also made with Kalman filter updating; we designate
these cases DRF-U and HRF-U. Meteorological inputs and initial conditions were based on measurements
and were identical for each model run.

The full effect of doubling or halving rainfall input is not always manifested in soil moisture. This is because
when rainfall is heavy the additional water reaching the surface may run off, or it may pond and subsequently
evaporate without infiltrating. The amounts of precipitation and infiltration for the four rain events for each
simulation are shown in Table II. For the smaller rainfall amounts, days 174 and 191-192, virtually all of
the water infiltrated in each case. However, for the two larger rainfalls, a considerable amount of water never

Table II. Rainfall amounts for each rain event during the study period, and infiltration amounts for all model
simulations. Precipitation amounts for DRF and HRF simulations are respectively double and one-half of the
amounts shown

Day of year Rainfall (mm) Infiltration (mm)
CON CON-U DRF DRF-U HRF HRF-U
174 86 8-6 8-6 172 17-2 4.3 4.3
177 88-9 68-2 69-8 81-2 85-0 43.5 43-6
180-181 533 44.8 48-8 46-1 63-2 26-2 26-2
191-192 13.7 137 137 27-1 27-3 6-8 6-8
Total 164-5 135-3 140-9 172-0 192-8 80-8 80-9
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Figure 4. Volumetric soil moisture for the 0—6 cm layer from simulations in which rainfall input is twice the observed amount. Results from
simulations with and without remote updating are shown. Control simulation results and soil moisture measured by the ThetaProbe sensors
are shown for comparison
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entered the soil, especially for the DRF and DRF-U simulations. In fact, for the day 180—181 rainfall there is
less infiltration in the DRF case than in CON-U. This is due to wetter antecedent conditions, which result in
more ponding and runoff in the DRF simulation. For the entire period, infiltration in the CON, DRF and HRF
runs is 82%, 52% and 98% of the imposed rainfall, or 82%, 104% and 49% of the observed rainfall. Thus
the infiltration differences, especially between DRF and CON, are much smaller than the imposed rainfall
differences.

SHEELS volumetric soil moisture estimates for the 0—6 cm layer and for the root zone (10—30 cm) for
the DRF and DRF-U runs are shown in Figures 4 and 5. The output of the control run, which uses observed
rainfall, is shown for comparison in both figures, and the ThetaProbe measurements for the surface layer are
shown in Figure 4. For the two major rain events on days 177 (89 mm observed) and 180—181 (53 mm),
the upper soil layer approached saturation in all cases, so differences between simulations are fairly small
immediately after precipitation. However, differences between DRF and CON are quite large during the rapidly
drying periods following day 181, reaching a maximum of about 0-1 on day 185. This delayed difference
between DRF and CON occurs because the extra rainfall in the DRF simulation is stored in the root zone
(note day 182 in Figure 5) and below, providing a moisture source for the upper and root zones during the
dry-down period. The differences persist for about 8 days, illustrating the memory of the system to initial soil
moisture. During the drying period, updating the soil moisture with the Kalman filter scheme greatly improved
the agreement between model 0—6 cm soil moisture and the ThetaProbe measurements. After day 185, the
0-6 cm soil moisture in the DRF-U simulation remains nearly constant, despite the slight downward daily
nudging. This is because, in SHEELS, the soil reaches the wilting point and transpiration is greatly reduced
thereafter. This behaviour is not observed in the ThetaProbe measurements, which indicate volumetric water
contents of less than 5% by day 191. The results shown in Figure 5 show reduced root zone soil moisture in
DRF-U relative to DRF, similar to that of the 0—6 cm layer. For both the surface layer and the root zone, the
DRF-U soil moistures in the dry-down periods are lower than for the control run, indicating that the update
scheme is compensating for the model bias.

Results of runs HRF and HRF-U, in which rainfall input is one-half of the observed amount, are shown
for the 0—6 cm layer and the root zone in Figures 6 and 7. As expected, the HRF case underestimates soil

0.5

c 0.4
= @ 02
E é:cg 2*RF, no updates (DRF)
= 0.1 === 2*RF with updates (DRF-U) |
Observed RF, no updates (CON)
0.0 + T T

T T T T T T T T T T T
180 182 184 186 188 190 192 194 196
1997 Day of Year

174 176 178

Figure 5. Volumetric soil moisture for the root zone (10—30 cm) from simulations in which rainfall input is twice the observed amount.
Model runs with and without remote updating are shown, along with results from the control simulation
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Figure 6. Volumetric soil moisture for the 0—6 cm layer from simulations in which rainfall input is one-half the observed amount. Results

from simulations with and without remote updating are shown. Control simulation results and soil moisture measured by the ThetaProbe
sensors are shown for comparison
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Figure 7. Volumetric soil moisture for the root zone (10—-30 cm) from simulations in which rainfall input is one-half the observed amount.
Model runs with and without remote updating are shown, along with results from the control simulation

moisture immediately following each rainfall event. However, there is good agreement with the ThetaProbe
measurements for several days following the rainfall. Consequently, the updating scheme has little effect on
soil moisture before day 185. Because of the model’s propensity for limited drying of the 0—6 cm layer, soil
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moisture is overestimated during days 185-191. Remote measurements on days 184—190 drive the 0—6 cm
soil moisture downward toward the ThetaProbe measurements, although, as in the other cases, there is a
limiting value of about 12% Volumetric Soil Moisture. Root zone moisture is also reduced in HRF-U relative
to HRF (Figure 7). Similar behaviour is observed in the dry-down during days 192—197, when updating again
brings the model soil moisture toward measured values (Figure 6).

In this study, updating of the soil moisture profile was performed on a daily basis. However, in assimilation
schemes using satellite data, microwave observations of a particular land area will not be available at such
high frequencies in the near future. More realistically, it can be anticipated that measurements will be available
every 3 days or so. To illustrate the effects of lower-frequency updating, we repeated the model simulations
using updates every 3 days. Results for the 0—6 cm soil layer are shown for the DRF simulations in Figure 8.
In the simulations denoted DRF-3U, the first update is applied on day 176. The largest differences between
DRF-U and DRF-3U occur on days 180 and 183—184, after rainfall occurred and before the next update in
DRF-3U. During the latter period, the benefit of daily updates is apparent, as errors in the DRF-3U simulation
become quite large. The update on day 185 results in a very large adjustment in the DRF-3U case, temporarily
bringing the results close to observed values. Similar results were observed in the HRF-3U simulations (not
shown). In this application, it appears that, in the presence of highly inaccurate rainfall input, applying an
assimilation procedure on a 3 day update cycle may result in substantial errors in soil moisture.

Summary and future research

The results shown here are very encouraging. In the presence of highly inaccurate rainfall input, using
remote microwave data via a Kalman filter update scheme results in better agreement with observed soil
moisture. Without data assimilation, it was seen that model soil moisture for the 0—6 cm layer reached a
minimum that was somewhat higher than observed, resulting in substantial errors during the driest part of the
study period. Updating the moisture profile daily with remotely sensed brightness temperatures reduced but
did not eliminate this bias.
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Figure 8. Volumetric soil moisture for the 0—6 cm layer from simulations in which rainfall input is twice the observed amount. Results
are shown from simulations in which remote updates are applied at 1 day and 3 day intervals. Soil moisture measured by the ThetaProbe
sensors is shown for comparison
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The system described here is designed with its ultimate application in mind—operational estimation of
near-surface and profile soil moisture using satellite microwave data. Consequently, there are many issues
that must be overcome in order to implement this system successfully. Some of these will be addressed in
future research which utilizes aircraft data at a relatively small scale, whereas others will become more evident
when satellite data are used. The most important of these issues are:

e missing or inaccurate input meteorological data
e long periods of missing remotely sensed data

o effects of scale and surface heterogeneity

e vegetation effects

e agricultural irrigation

e surface roughness

e diurnal effects.

ACKNOWLEDGEMENTS

This work was supported by Universities Space Research Association under NASA Grant NCCW-0084
with Alabama A&M University’s HSCaRS Center. We acknowledge Frank Archer, Ahmed Fahsi, Andrew
Manu, Jimmy Moore, Narayan Rajbhandari, Garland Robertson, Vishwas Soman, Jacques Surrency, Web
Tadesse and Teferi Tsegaye for their assistance during the field experiment. Data were obtained from the
Atmospheric Radiation Measurement (ARM) Program sponsored by the US Department of Energy, Office of
Energy Research, Office of Health and Environmental Research, Environmental Sciences Division. We also
thank Christa Peters-Lidard of Georgia Tech for supplying meteorological data and Dara Entekhabi of the
Massachusetts Institute of Technology for many helpful discussions.

REFERENCES

Benard R, Vauclin M, Vidal-Madjar D. 1981. Possible use of active microwave remote sensing data for prediction of regional evaporation
by numerical simulation of soil water movement in the unsaturated zone. Water Resources Research 17: 1603—1610.

Brown RG, Hwang PY-C. 1992. Introduction to Random Signals and Applied Kalman Filtering. John Wiley and Sons: New York; 502pp.

Capehart WJ, Carlson TN. 1994. Estimating near-surface soil moisture availability using a meteorologically driven soil-water profile model.
Journal of Hydrology 160: 1-20.

Choudhury BJ, Schmugge TJ, Chang A, Newton RW. 1979. Effect of surface roughness on the microwave emission from soils. Journal of
Geophysical Research 84: 5699—5706.

Clapp RB, Hornberger GM. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research 14: 601-604.

Dickinson RE, Henderson-Sellers A, Kennedy PJ. 1993. Biosphere Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR
Community Climate Model. NCAR/TN-387 + STR; 72pp.

Dobson MC, Ulaby FT, Hallikainen MT, E1-Rayes MA. 1985. Microwave dielectric behavior of wet soil—part II: dielectric mixing models.
IEEE Transactions on Geoscience and Remote Sensing 23: 35-46.

Eagleman JR, Lin WC. 1976. Remote sensing of soil moisture by a 21-cm passive radiometer. Journal of Geophysical Research 81:
3660-3666.

Engman ET, Chauhan N. 1995. Status of microwave soil moisture measurements with remote sensing. Remote Sensing of the Environment
51: 189-198.

Entekhabi D, Nakamura H, Njoku EG. 1994. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation
of multifrequency remotely sensed observations. /[EEE Transactions on Geoscience and Remote Sensing 32: 438-448.

Galanatowicz JF, Entekhabi D, Njoku EG. 1999. Tests of sequential data assimilation for retrieving profile soil moisture and temperature
from observed L-band radiobrightness. IEEE Transactions on Geoscience and Remote Sensing 37: 1860—1870.

Houser PR, Shuttleworth WJ, Famiglietti JS, Gupta HV, Syed KH, Goodrich DC. 1998. Integration of soil moisture remote sensing and
hydrologic modeling using data assimilation. Water Resources Research 34: 3405—-3420.

Jackson TJ, Schmugge TJ. 1989. Passive microwave remote sensing system for soil moisture: some supporting research. IEEE Transactions
Geoscience Remote Sensing 27: 225-235.

Jackson TJ, Schmugge TJ. 1991. Vegetation effects on the microwave emission of soils. Remote Sensing of the Environment 36: 203-212.

Jackson TJ, Le Vine DM, Swift CT, Schmugge TJ, Schiebe FR. 1995. Large area mapping of soil moisture using the ESTAR passive
microwave radiometer in Washita ’92. Remote Sensing of the Environment 53: 27-37.

Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1645-1662 (2002)



1662 W. L. CROSSON ET AL.

Jackson TJ, O’Neill PE, Swift CT. 1997. Passive microwave observation of diurnal surface soil moisture. IEEE Transactions on Geoscience
and Remote Sensing 35: 1210-1222.

Jackson TJ, Le Vine DM, Hsu AY, Oldak A, Starks PJ, Swift CT, Isham JD, Haken M. 1999. Soil moisture mapping at regional scales
using microwave radiometry: the Southern Great Plains hydrology experiment. [EEE Transactions on Geoscience and Remote Sensing 37:
2136-2151.

Laymon CA, Manu A, Crosson W, Jackson T. 1999. Defining the range of errors associated with remotely sensed soil moisture estimates.
In Proceedings of SPIE Conference on Earth Surface Remote Sensing, vol. 3868. September 20—23, Florence, SPIE Press: 504—512.

Li KY, DeJong R, Boisvert JB. 1998. Towards estimating soil moisture in the root zone using remotely sensed surface data. Canadian
Journal of Remote Sensing 24: 255-263.

Mohanty BP. 2001. Soil Property Measurement—SGP97, Oklahoma. URL.: http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/SGP97/arssl.html.

Njoku EG, Kong N-A. 1977. Theory for passive microwave remote sensing of near-surface soil moisture. Journal of Geophysical Research
82: 3108-3118.

Prevot L, Bernard R, Taconet O, Vidal-Madjar D, Thony JL. 1984. Evaporation from a bare soil evaluated using a soil water transfer model
and remotely sensed surface soil moisture data. Water Resources Research 20: 311-316.

Smith EA, Crosson WL, Cooper HJ, Weng H-Y. 1993. Estimation of surface heat and moisture fluxes over a prairie grassland. Part III:
design of a hybrid physical/remote sensing biosphere model. Journal of Geophysical Research 98: 4951-4978.

Smith MR, Newton RW. 1983. The prediction of root zone soil moisture with a water balance—microwave emission model. AGRISTAARS
Rep. SM-T3-04425.

Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1645-1662 (2002)



